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Abstract-The series of several variables has been applied to the solutions of the boundary-layer 
equations of free convection in laminar three-dimensional systems. Numerical computation of the 
solutions has been investigated for the case of free convection over an inclined circular cylinder. The 
temperature profiles calculated from the first five terms of the series are compared with the experimental 

data. Some other possibilities of application of the results are mentioned. 

NOMENCLATURE 

a, exponent in expansion of the principal 
functions defined by equation (20); 

.i;s> non-dimensional stream functions 

defined in equation (9) ; 
,j;,gj, stream functions, coefficients in 

expansion off and g in terms of 5 ; 

.fj.,x Sj.w stream functions, coefficients in 
expansion of,h and gj in terms of <; 
acceleration vector; 

local components of the acceleration 
vector in Y and z-directions 

respectively ; 
Grashof number defined by 

Gr = gP(T,-L)13 
1’2 

local heat transfer coefficient ; 
integer numbers ; 
configuration functions, see equation (5); 

K,,R,, coefficients in expansion of K 

I 

m, 4 

Nu, 

Pr, 

P>Q, 

P? 4, 

R, 

Rj, 

in terms of < ; 
characteristic length; 

integer numbers ; 
Nusselt number defined by 
equation (57); 

Prandtl number defined by Pr = !; 
u 

principal functions defined in 
equation (I 7) ; 
exponents in expansion of the 
configuration function S, see 
equation (18) ; 
principal function defined in 

equation (17); 

coefficients in expansion of R in 
terms of t ; 
radius of cylinder; 
configuration function in x-direction ; 
temperature; 

* Present address: Abteilung fur Experimentelle Physik 
II, The University of Ulm, 7900 Ulm, Germany. 

TJ> surface temperature; 
T ambient temperature; 
up”;, W, velocity components in x, 4’ and 

u, v, w. 

z-directions respectively; 

non-dimensional velocity components 
defined by 

U 

’ = (v/l)j”Z’ 
V 

’ = (vj,)Gr’,4’ 

x, Y, z, orthogonal coordinates; 

-y, Y, z, non-dimensional coordinates defined by 

Greek symbols 

thermal diffusivity; 

thermal expansion coefficient ; 
inclination angle of cylinder; 
independent variables defined by 
equation (8); 

dimensionless local temperature defined 
by equation (9); 
coefficients in expansion of 0 in 
terms of < ; 
coefficients in expansion of Bj in 
terms of c ; 
thermal conductivity; 
kinematic viscosity; 
independent variable defined by 
equation (8); 

non-dimensional stream function 
defined in equation (7); 
circumferential angle, .x/r; 

non-dimensional stream function defined 
in equation (7). 

I. INTRODUCTION 

IN Two-DrMENstoNAL geometries, for laminar free 
convection heat transfer from isothermal walls has 
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been extensively treated with success by a number of 
investigators [l-4]. The application of Acrivos 
method [5], which is very useful in the prediction of 
the heat transfer coefficient of laminar two- 

dimensional free convection for large Prandtl num- 
bers, to the three-dimensional systems has been 

proposed by Stewart [6,7]. This work is the only 
investigation to the author’s knowledge which had 

dealt theoretically with the problem of the free 
convection over three-dimensional bodies. As in the 
case of Acrivos solution for two-dimensional sys- 

tems, however, at intermediate and small Prandtl 

numbers the Stewart solution can not be applied 
without a further analysis. 

In the present study, an alternative approach to 

predict the coefficient of heat transfer, therefore the 
temperature and the velocity fields, for laminar free 

convection over three-dimensional bodies of arbi- 
trary shape to a fluid of any Prandtl number, is 
presented. It is based on the simple notion that the 

solution of the partial differential equations of 
several variables function can be expressed in a series 
form of these variables. This viewpoint has been used 
by Duric [8,9] to obtain the solution of the problem 

of unsteady incompressible laminar boundary-layers 
on two-dimensional bodies of arbitrary shape in the 
form of universal functions with respect to the body 

contour. 

To examine the usefulness and limitations of the 
present study. the solution has been applied to the 
case of free convection on an inclined circular 

cylinder, in order to attempt comparison with the 
experimental data measured by Deluche [IO]. 

2. DEVELOPMENT OF BASIC EQUATIONS 

Consider the transfer of heat from a solid surface of uniform temperature TO to an infinite ambient fluid of 
undisturbed temperature T,, by steady laminar free convection. All fluid properties will be assumed to be 

constants except for the density changes which give the buoyancy terms in the momentum equations. 
Let .X and z denote the orthogonal coordinates in the wall surface with the origin at the stagnation point, 

and y denote the coordinate which is perpendicular to the wall. For free convection on two dimensional or 
axially symmetrical bodies only one component of the acceleration vector is taken into account in the 
boundary-layer equations, and it depends in general only on one space coordinate in the wall surface. The 
two components of velocity depend on two space coordinates. In the case of a three-dimensional free 
convection boundary-layer the flow of fluid is generated by the two components of the acceleration which can 

depend on two space coordinates in the wall surface each, and the flow within the boundary-layer possesses 

all three velocity components which, moreover, depend on all three space coordinates in the general case. If II. 
v and w denote these three velocity vector components in the direction of X, J and : respectively. the 

boundary-layer equations of continuity. motion and energy are, then, as follows: 

The x and z components of the acceleration vectors gs and g,, as have been mentioned earlier, depend in 

general on x and z, but in the present study we consider only a particular case, when c/,(u) and g;(z). For 

convenience of further discussion, let us write 

.y(x,z)= ys(x)K(z); Y,(z) = (jK(z). 

The boundary conditions appropriate to the problem are 

?‘ = 0. u=r=w=O, T=T, 
(6) 

1’+ MI, Ll,1‘, U’ + 0, T+ TX. 

If the dimensionless stream functions which satisfy identically the continuity equation (I ) are defined as 

using the coordinate transformation 



one finds 

with 

Laminar free convection boundary-layer in three-dimensional systems 

and introducing new dependent variablesf; g and 0 such that 

SW, Y, Z) 
.f(i”>%U = (~~)3'4($~)3/4 ; 

(W”6, (%Y> F) 
g(L%o = [s(5)Jl'3(41)3/4 ; 

QL%i) = wc.v,ar 

ii = [s(5)]"3(~1)1'Z(45)"2f' 

fiz - [w11'3(%)3'4 -- 
(W’” 

[wl2’3 cW” 
6 = ~)1/2 9’. 

The equations resulting from the transformation are: 

PC @‘+ {g + ($)f} 8’ = (%I) 

q=o, j-=f’=g=g’=O, 0s 1 

q-co, f’,g’-+O, B--+0. 
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(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

In the forgoing expressions, the prime denotes derivative with respect to q, and a( ,)/8(x, r)) is the Jacobian. 
The transformed configuration functions P(t), Q(t) and R(r) are given by: 

P(5) =;+~$&[S(c)]; Q(t) = 2{P(5)-3 ; R(5) = ;&. (17) 

In order to employ Goertler type series [ll], we assume that the configuration function S(X) has the 
expansion form : 

S(T)= xp 2 Sj2j, (18) 

j=O 

where p and q are positive real numbers. It can be demonstrated that the transformed configuration functions 
P(r), Q(t) and R(r) which according to Goertler terminology can be also called the principal functions, take 
the following series forms: 

I’({) = 5 Pjc”‘; Q(i) = f Qj("'; R(5) = jzo Rjlaj* (19) 
j=O j=O 

where PO, Q,,, R. and a are obtained to be: 

PO =;(%I; Q. = 3rs)-;; 

0 
R. = 

forp# 1 3q 

4 forp= 1’ a=p+3’ 

So(P+3) 

(20) 

One can show, upon putting p = 0, q = 1 and p = 1, q = 2 in the expression of PO and a, that they 
correspond identically to sharp and round-nosed cylinders, respectively, in the two-dimensional case as has 
been mentioned and discussed earlier by Saville and Churchill in [3]. Before we come to the further 
discussion, it should be noted that from the substitutions of S(X) and 5 into R(t) in equation (17), q in (18) 
should be restricted. The restriction is: 

q=l-p, for pfl. (21) 
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According to the expansions of the principal functions, we assume for the solutions of (1 j), (14) and ( I 5) 
satisfying (16), convergent series of the form 

.f’(<. V. :) = i .fj(V> i)S”j; g(i’> ‘I$ i) = i gj(V> 35”‘; 

I’” j=O 

Upon substituting (19) and (22) into (13), (14) and (15), collecting and equating to zero the coefficient of each 

power of 5, the following groups of differential equations are obtained, 

for the higher orders are given by, 

/y” + SO.fy’- f (6Ib.f; +.16 Q;) +.fd’C!j-tR(5Pj 
] .,I 

+ (S) 1 fo.fj + (1 + $uj),f~‘,J~-$W, + ~li).G /,;’ 

j= 1 

Ii 
j-l 

Lj_1 = 1 (3gIf;‘_i-gi.f;ilj)+(41) $ pjfd2 + C (Pifd.f;'-i+(Po+ai)filfl~i) 
i=O i=l 

The boundary conditions are: 

B=n, /;=,//=gj=gi=O. for ,j=O,1,2,3 ,_.. 

0” = 1. 0,=0. for ,j= I,&3 ._.. 

‘/-‘XL, f~,g;,0+0, for ,j = 0, 1,2,3 .__. 

(32) 
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Now, in order to reduce equations (23)-(28) into the ordinary differential equations, the configuration 
function in the direction of z is assumed to have the expansion form: 

K(l)= 2 K,i”&=R(i)= f IQ” (33) 
i=0 i=0 

Accordingly, we suggest the following expansions for J(r), i), gj(q, <) and Hj(q, [) (i = 0, 1.2.3,. ): 

fJrl>i) = fI _f~,n(rl)i"; Sj(r?Y%) = f 9j,n(rl)i"; Hj(r13i) = f ej,fl(S)i". (34) 
II=0 n=O n=O 

When equations (33) and (34) are substituted into (23)-(28) using the same procedure as in reducing 
(23))(28) from (13))( 15) we obtain, for j = n = 0, 

.fdlo+9o.o.fdlo-S9;,o.fd,o+~o~o,o=O 

9i:o +90.09;,0 - ssb’.o +RoKo%o = 0 

Pr~‘Q~,o+go,o~o,o = 0, 

(35) 

(36) 

(37) 

forj=O,n= 1,2,3 ,... 

forj= 1,2,3 ,..., n=O, 

.f~,~+9O.O~f;i.b+~~9b.O.fj~O~.fd.O9~.O)+fdlO9j.O+KO~j,O~Lj-~,O 

9;'; +90.09y.o -?Sb.o9;.o+9i,o9j.o+RoKoQj.o= Mi-1.o 

Pr-l ~J~O+90,0Q~,0+~b,09j.0 = Nj-l,O, 

andforj= 1,2,3 ,..., II= 1,2,3 ,..., 

.f;,~~+90,0f~‘n-~(1 +2n)9b.o~f;(.,,-ffd.os~,,,+(~ +~n)~:09j.,,+KOej,n=Lj..l.; 

9;:,:,+9,,09j:n -81 +n)9b.09;,,,+(l +~n)S~.oSj.n+RoKoOj.,, = Mj,i!T 

Pr-‘~~,+go,oB~,,-~n~o.og~.,,+(l +$n)Hb,ogj.n= Nj,i!zf, 

n-l 

No,,-, = %fo,oQb.,,-I - 1 ‘,(I +4m)so,,eb,,,-,+4(eo,,gb.,,-,-.fo.,Hb.,~,)} 
?lt=l 

j-l 

Lj- 1.0 = iJIl (fg~,Ofj'~i.O-Si,O~f;lli,O) 

j- 1 

Mj-l.O= iFl (S9i.oS:Li.o -9i,o9y-i,o-KoRiBj-i,o)-KoRjBo,o 

i-l 
Nj-l,o= - ;gl &.oQj-i.0 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 



n-l j-l j-i 

-gi.mq” I+4 1 c 1 Qi.K,mgj-k-wm-1 ,, I” m 
m=O i=l kc* 

(53) 

(54) 

(55) 

(56) 
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Knowing the coefficients in the expansions of functions P(r), Q(t), R(c) and K(l), the classical numerical 

integration methods of first order ordinary differential equations systems now can be applied. Of course for 

practical purposes, the computation of the first few terms of the solutions would be enough, as our experience 
shows in the case of two-dimensional systems. 

The local heat transfer coefficient in terms of the Nusselt number can be obtained from the following 

expression: 

hl 

N” = I(&-T,) = 
(57) 

3. APPLICATIONS 

Without neglecting the possibilities of application of the theory to other surface configurations, the results 
will be applied here only to the case of free convection from the outer surface of an inclined circular cylinder 
placed in the gravitational acceleration field, since experimental data for this case are available for 
comparison. Under consideration is a circular cylinder having radius r, tilted with the inclination angle 7. 

When the coordinates x and z are taken respectively as circumferential and longitudinal coordinates, 
and upon selecting r as the characteristic length, we identify 

Q(5) = -(;)(;)1’2{3/2+ . . . 

(58) 

(59) 

K(i) = sin y, If([)= 1 (61) 

wherein, 5 is given by: 

5 = [cos y]l’3 s ’ [sin t]“3 dt. (62) 
0 

The first five terms of the series have been numerically calculated on a digital computer following the 

integration procedure of Runge-Kutta-Merson [12]. The curves illustrated in Figs. l-3 are typical results 
obtained from numerical integrations. The computed temperature fields at a distance z = r for cp = 0, 45, 90 
and 135” under inclination angles y = 25 and 45” with Prandtl number Pr = 0.72 are shown in Figs. 447 

together with the experimental data of Deluche [lo] for air. As it is seen, the agreement between the 

theoretical results and the experimental data is satisfactory. It should be noted that, for the calculations here, 
all the physical properties are evaluated at the film temperature, this conducing to the different value of 

Grashof number estimated in [lo]. Moreover, since the measurements of temperature at distances less than 
1.5 mm seem to be in error, they were not plotted. 

Although it is expected that the series in terms of [ is convergent only for [ < 1, the temperature fields have 

also been calculated for distances z = 3r, 5r and the results agreed reasonably with the experimental evidence. 

FIG. 1. The functional coefficients of the stream function 
f ([,vJ, i), for y = 45” and Pr = 0.12. 

-06j, I I I I I I I 
I 2 3 4 5 6 7 8 

r) 

FIG. 2. The functional coefficients of the stream function 
g({, 9, c), for y = 45” and Pr = 0.72. 
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FIG. ?. The functional coefficients of the dimensionless 
temperature functton O(<,n. 0, for ;‘ = 45 and Pr = 0.72. 

FIG. 6. Compartson of computed temperature profiles at I 
=r, (p=90, for Pr=0.72, Gr=1.3x 10’ (----- y=25 , 

~~ ;’ = 45 ) with the experimental data (H ;’ = 25 , A ; 
=45 I 

n 

FIG. 4. Comparison of computed temperature profiles at - 
=r, cp=O’, for Pr=0.72, Gr=1.3x 10’ (----- y=25 . 

;’ = 45 ) with the experimental data ( n ;’ = 25 _ A ;* 
= 45 ). 

FIG. 7. Comparison of computed temperature profiles at z 
=r, cp= 135 , for Pr=0.72, Gr= 1.3 x 10’ (----- ; = 25 , 

“. , = 45 ) with the experimental data ( n 7 = 25 A ;’ 
= 45 ). 

9 

FK;. 5. Comparison of computed temperature protiles at : 
=r, (p=45. for Pr=O.72, Gr=1.3 x 10’ (---- y=25 . 

;’ = 45 ) with the experimental data (I 7 = 25 A 1~ 
= 45’ ). 

The general solutions presented in the first part of 

this paper have a great potential of applications. It 
has been noted by the author that the series obtained 
can be applied to more complicated surface con- 
figurations such as inclined elliptical cylinders. 
vertical or inclined toruses etc. Furthermore, the 
method used here seems also to be applicable to the 
problems in hydrodynamic and forced convection 
boundary-layers of three-dimensional systems. 

Although it has been shown that the application 01 
the series for inclined circular cylinders verifies 
satisfactorily the temperature fields obtained from 
the experiment. it is however. desirable to have 
further verification to compare other results such as 
velocity profiles or other applications with the 
experimental results. Unfortunately. the author was 
unable to find them. 
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COUCHE LIMITE DE CONVECTION NATURELL~ LAMINAIRE DANS DES SYSTEMES 
TRIDIMENSIONN~LS 

Rbsumk -On propose l’utilisation de la strie i plusieurs variables pour les solutions des equations de 
couche limite en convection naturelle dans des systemes tridimensionnels. Les solutions obtenues ont ete 
calculees numeriquement dans le cas de la convection naturelle autour d’un cylindre incline. Les protils de 
temperature calculis en prenant les cinq premiers termes sont compares avec des rtsultats experimentaux. 

Quelques autres possibilitts d’application de la theorie sont citees. 

GRENZSCHICHT BE1 LAMINARER FREIER KONVEKTION IN DREIDIMENSIONALEN 
SYSTEMEN 

Zusammenfassung-Reihen mit mehreren Variabien wurden zur LGsung der Grenzschiehtgleich~lngen fiir 
die freie Konvektion in laminaren dreidimensionalen Systemen angewandt. Die numerische 3erechnun~ 
der LGsungen fur den Fall freier Konvektion i&r einem gene&ten Kreiszylinder wurde untersucht. Die 
mit den ersten fiinf Gliedern der Reihe berechneten Temperaturprofile werden mit experimentellen Daten 

verglichen. Einige andere Anwendungsmogiichkeiten der Ergebnisse werden erwahnt. 

JIAMMHAPHb11;1 CBO6OflHOKOHBEKTMBHbII? CJIOI? B TPEXMEPHbIX CMCTEMAX 

AHHOTPIIHS - fins peuremx ypasnenal norpaHur~or0 cnosi npe na.nmniH CBO6OnHOii KomeKum B 

JlaMHHMapHblX T#XMePHUX CHCTeMaX BC~OJlb3,'lOTCR p5W,, ,I0 HeCKOnbXAM FleFMeHHbIM. &iiTCR 

OUeHKa P’LXiICHHii JIJHI CJIjW3R CBO6OLWOii XOHBi%3ikiH Ha HaKJtOHHOM KpyrJIOM WfJlHHLl~. TeMnepa- 
T,'PHbR n~@HJE~, pWCYiiTaHHbie n0 IIepBMM IMTH WRXiS, p5UU, C~BHHBSOTC% C 3KCtleptiMeHEUlb- 

HblMH ~aHH~M~. YKZXMHO Ha HeCKOnbKO B03MOxHbIX C.ZyWeB ~CnO~~b3OBaH~K &Ertya~bTaTOB ;taHHOir 

pa6o-r~. 


