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Abstract—The series of several variables has been applied to the solutions of the boundary-layer

equations of free convection in laminar three-dimensional systems. Numerical computation of the

solutions has been investigated for the case of free convection over an inclined circular cylinder. The

temperature profiles calculated from the first five terms of the series are compared with the experimental
data. Some other possibilities of application of the results are mentioned.

NOMENCLATURE

a, exponent in expansion of the principal
functions defined by equation (20);

fg, non-dimensional stream functions
defined in equation (9);

f»9; stream functions, coefficients in
expansion of fand g in terms of ¢;

fim8;n stream functions, coefficients in

expansion of f; and g; in terms of {;
g, acceleration vector;
g 4d., local components of the acceleration
vector in x and z-directions
respectively;

Gr,  Grashof number defined by
T,—T,)0P
Gr — gﬂ( 0 . oc) ;
N
h, local heat transfer coefficient ;
ij,k, integer numbers;
K,K, configuration functions, see equation (5);

K,.K,, coefficients in expansion of K
in terms of {;
[ characteristic length;

m,n, integer numbers;
Nu, Nusselt number defined by
equation (57);
Pr, Prandtl number defined by Pr = X;
o

P,Q, principal functions defined in
equation (17);

p.q, exponents in expansion of the
configuration function S, see
equation (18);

R, principal function defined in
equation {17);

R;,  coefficients in expansion of R in
terms of &;

r, radius of cylinder;

S, configuration function in x-direction;

T, temperature;

*Present address: Abteilung fiir Experimentelle Physik
I1, The University of Ulm, 7900 Ulm, Germany.
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surface temperature;

ambient temperature;

velocity components in x, y and
z-directions respectively;
non-dimensional velocity components
defined by

R u _ v

u= , b= - 5
(v/1) Grt/? (v/1)Gri/*

‘ w

w =

orthogonal coordinates;
non-dimensional coordinates defined by

-

.‘2='T,}7=Gr

y -
Uz =
1

1*§

Greek symbols

&,
B,
7
&,

thermal diffusivity;

thermal expansion coefficient ;
inclination angle of cylinder;
independent variables defined by
equation (8);

dimensionless local temperature defined
by equation (9);

coefficients in expansion of  in

terms of &;

coefficients in expansion of 6; in

terms of {;

thermal conductivity;

kinematic viscosity ;

independent variable defined by
equation (8);

non-dimensional stream function
defined in equation (7);

circumferencial angle, x/r;
non-dimensional stream function defined
in equation (7).

1. INTRODUCTION

IN TWO-DIMENSIONAL geometries, for laminar free
convection heat transfer from isothermal walls has
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been extensively treated with success by a number of
investigators [1-4]. The application of Acrivos
method [5], which is very useful in the prediction of
the heat transfer coefficient of laminar two-
dimensional free convection for large Prandtl num-
bers, to the three-dimensional systems has been
proposed by Stewart [6,7]. This work is the only
investigation to the author’s knowledge which had
dealt theoretically with the problem of the free
convection over three-dimensional bodies. As in the
case of Acrivos solution for two-dimensional sys-
tems, however, at intermediate and small Prandtl
numbers the Stewart solution can not be applied
without a further analysis.

In the present study, an alternative approach to
predict the coefficient of heat transfer, therefore the
temperature and the velocity fields, for laminar free

convection over three-dimensional bodies of arbi-
trary shape to a fluid of any Prandtl number, is
presented. It is based on the simple notion that the
solution of the partial differential equations of
several variables function can be expressed in a series
form of these variables. This viewpoint has been used
by Duric [8,9] to obtain the solution of the problem
of unsteady incompressible laminar boundary-layers
on two-dimensional bodies of arbitrary shape in the
form of universal functions with respect to the body
contour.

To examine the usefulness and limitations of the
present study. the solution has been applied to the
case of free convection on an inclined circular
cylinder, in order to attempt comparison with the
experimental data measured by Deluche [10].

2. DEVELOPMENT OF BASIC EQUATIONS

Consider the transfer of heat from a solid surface of uniform temperature T, to an infinite ambient fluid of
undisturbed temperature T, by steady laminar free convection. All fluid properties will be assumed to be
constants except for the density changes which give the buoyancy terms in the momentum equations.

Let x and z denote the orthogonal coordinates in the wall surface with the origin at the stagnation point,
and y denote the coordinate which is perpendicular to the wall. For free convection on two dimensional or
axially symmetrical bodies only one component of the acceleration vector is taken into account in the
boundary-layer equations, and it depends in general only on one space coordinate in the wall surface. The
two components of velocity depend on two space coordinates. In the case of a three-dimensional free
convection boundary-layer the flow of fluid is generated by the two components of the acceleration which can
depend on two space coordinates in the wall surface each, and the flow within the boundary-layer possesses
all three velocity components which, moreover, depend on all three space coordinates in the general case. If u,
v and w denote these three velocity vector components in the direction of x, » and : respectively. the
boundary-layer equations of continuity. motion and energy are, then, as follows:

cu v Ow

+o o =0 ()

éx Oy (¢

cu cu u ¢u
u—+r—+w- =g f(T-T )+vis (2)
Ox Ay cz éy
ow ow dw
v U W 3
éx Cy ¢z
cT éT ¢T Ow
Ut Ut W= a5 4)
0x cy 0z ey

The x and z components of the acceleration vectors g, and g, as have been mentioned earlier, depend in
general on x and z, but in the present study we consider only a particular case, when g (x} and g¢.(z). For
convenience of further discussion, let us write

g(x,z)= g S(x)K(z);
The boundary conditions appropriate to the problem are

y=0, u=v=w=0, T=T,

g.(z) = g K(z). (5)

(0)
y—ooo, uov,w—o0, T-oT,.
If the dimensionless stream functions which satisfy identically the continuity equation (1) are defined as
o i &y 0P
L}:»}{Iv: »":—g; E=~(q—di+f¢j). (7)
oy Cy Ox 0z,
using the coordinate transformation
o S 135
S= [SO]'Pde (=20 o= L3N )

N = o T a4 el
Jo @O
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and introducing new dependent variables f, g and 8 such that

W(x,3,2) (GEV*P(X,7,2)

fEm = (-W§ g(f,mC)=W;
0(&’ ’77 C) = 7—‘('i’ .)_)’ 2)’ (9)

one finds
i=[SE*EOEEH s (10)
_ [S(f)]l/s(%C)m[ 5f Vlf {(%é)d[S(c_“;)] g &g '79}
S T L2 i 9_n 1
’ g |76 S de } e ta T a
S(EVIZ3 ()12

W:[ (é)(]%é)l(;l;) , )

The equations resulting from the transformation are:

1ol =30 RO - PO ROI= D g LIL
d

o =10 G010 400, 9} + ROKOI = (0{50 8+ 005000 g

et 10 {2000 4 200

‘o 3070 =G 3 ;
P g+ G070 = 60{ 500 + 40 5L )

with

=0 f=f=g=g=0 0= .

n—oo, f,g'—=0, 8-0.

In the forgoing expressions, the prime denotes derivative with respect to #, and &(, )/d(x,n) is the Jacobian.
The transformed configuration functions P(&), Q(¢) and R(&) are given by:

1 1 ¢ d

P S(& = 2P a1 R 2
©=3+3503: 5O QO=2PO~1: RE=3

<

R A 17
ST 1)

In order to employ Goertler type series [11], we assume that the configuration function S(X) has the
expansion form:

S(x)=xr Y §;x%, (18)
j=0
where p and g are positive real numbers. It can be demonstrated that the transformed configuration functions
P(¢), @(£) and R(¢) which according to Goertler terminology can be also called the principal functions, take
the following series forms:

- % P 00 = 3 0 RO = B REY (19)

where Py, Q. R, and a are obtained to be:

3/p+1 p+1\ 3
P, = =3 —;
¢ (,,+3) o (p+3) 2

0 forp#1 3q
; a=——.

4 forp=1 p+3
Solp+3)
One can show, upon putting p=0, g=1 and p=1, ¢ =2 in the expression of P, and a, that they
correspond identically to sharp and round-nosed cylinders, respectively, in the two-dimensional case as has
been mentioned and discussed earlier by Saville and Churchill in [3]. Before we come to the further
discussion, it should be noted that from the substitutions of S(x) and ¢ into R(£) in equation (17), ¢ in (18)
should be restricted. The restriction is:

20
Ry =

g=1-p, for p#1. (21)
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According to the expansions of the principal functions, we assume for the solutions of (13), (14) and (15)
satisfying (16), convergent series of the form

TENO=Y [0 gEn )= ZO 9,01, D&Y
i=0 i=

”M"

0 i, §He. (22)

Upon substituting (19) and (22) into (13), (14) and (15), collecting and equating to zero the coefficient of each
power of £, the following groups of differential equations are obtained,

(f0:90)

T +dofs = 3900+ GO S —3Po S5} KD, —(“C)—(Emm (23)
" v . . Clgo. g
9o +9096— 390 + GO { fogo — 3Q0fog0} + RoK(), = (%s)’zo“n')"q' (24)
o BN o 004, 90)
Prot 05+ {go+ (G0 fo} 0 = GO — 2, (25)
AM¢on)
for the higher orders are given by,
17+ a0t = 3o ti + fo9) + 1o 9;+K(()0;
+G ){f(,/ + (1 +3ai) fo' ;=3 2P +aD fo ff
O ,,Hl cg
_<.‘/o]';’"+gj WO fo wj O)} Ly (26)
S Y ¢s
97" + 904 — 39045+ gog; + RoK()H;
+<§¢>{f;,g;+u +3ai)gi fy— 4o+ ) fod — 20080 1}
,Cg; Cg g9, ,0g
—(.Go’;j:l‘i‘q = —g; Y q:))}: M (27)
Narile X & o)
Prot 0] +go s+ 059+ (30)
{fo 0+ (1+3a)0, f;—34j 150,
C
(00 LIS “’0 00 0',4’9)} Ny (28)
s &9 c
j=1 i-1 ‘ .
Lrl Z fj i~ 9 /}” J+ [ {P f + ‘—Zl (Pif(),fj,-i-}_(PO +al)fifj/—i)
j-1 j—i o j—1 {:/"/ni i (‘)gi
+ Z Z Pifk’ji’*k*i}~ Z <(1 +_‘”)ff, i+ g ar - j,Li“ﬂ;‘>j| (29)
i=t k=1 i=1 s s
Jj—1 ] J-1 i
M, = Z (%g,‘ll, i gig}’i)+(§c){§{Qj./(;g,()+ Z (Qifod;-;
i=1 i=1
Pt =i , -1 ,
+(Qo tai)g:f;-;)+ Z Z Qi.fk/g}—k—i}_ Z ((1 +ai) fig; -
i=1 k=1 i=1
_ 0
+ 4" ":, —g) fﬂ_m (R 0y + Z R0, ) (30)
o G- g
= — Z 910 + (3 )|: Z{;at(l foi— (U +%a) 0 +0,——=—0;_ l(w}:l (31)
i=1 s G

The boundary conditions are:
n=20, fi=f=g;=¢;=0 for j=0123, .
0g=1. 0,=0, for j=123... (32)
n—x, f.g,0,-0, for j=0,1,2,3,...
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Now, in order to reduce equations (23)—(28) into the ordinary differential equations, the configuration
function in the direction of z is assumed to have the expansion form:

K({Q)= Z K, (", K(C)=

u'Mg

K" (33)

Accordingly, we suggest the following expansions for f;(n,{), g;(n,{) and 0,(n,{) (= 0,1,2.3,...):

8

00 =Y fum gm0 =Y gl 00 =Y 0,0 (34)
n=0 n=0

n=0

When equations (33) and (34) are substituted into (23)-(28), using the same procedure as in reducing
(23)-(28) from (13)—(15), we obtain, for j =n =0,

130 +90.0/00=%90.0/6.0+Ko00,0=0 (35)
9o'0+90.096.0— 396.0+ RoKolo o =0 (36)
Pr7198_0 +70.000,0 =0, (37)

forj=0,n=123,...
omT 90,00 -3a +2’1)gb,of6.n_%fo/,ogb.n+(1 +%”)f(;:090.n +K090, n=Lon-1 (38)
Gom+0.096.— 31 +1)g6 090+ (1 +3505 0900+ RoKollg,= Mo, (39)
Pro05 40,0000 —$190,000.+ (1 +31)05 000 = Noou -1, (40)

forj=1,23,....n=0,
Jl5 490080 +3d0.0fi0~ f5.095.0)* fo.095.0 + Kobjo=Lj-1,0 (41)
70 +90.0970—$90.09).0+95.09,0+ RoKobjo=M;_1 (42)
Pro1070+9o080+06.0950 = Nj-1.00 (43)

and forj=1,2,3,...,n=1,2,3,...,

Sint9o0.0fin=304+20g0.0f/u=3f5.05n+ (1 +50) 1509+ Ko =L1 11 (44)
Gintdo.09)n— 31 +1)go.0gjn+ (1 +31)9G 090+ Ro Ko, = M, 17 (45)
Pr- 10}:n+go,001j,n_ %nOo,Og_’,-.,,-l—(l +%n)0/0,0gjm= Nf.;£’i'~ (46)

where

n—1
Lo.n—-l = %l:%POfO,.Of(;.n~l_ﬁ).of()/:n—l + Z {%POfé),mfé),n'm—l -K 60 n-m

(4+m)g0mf N m +m)f(;.mg/0.n-m me/On m-— lf (47)
n—1 .
My, :%[%Qo.fo’.ogb,n—l"‘i‘RoKneo,o_fo,og/(;,nﬂ + Z {%Qofol.mgb.n—mq”%RoKm()o.n—m
m=1
+(%+m)gb.mgb,n-m—(%+m)go,,..g’6‘n7m—f&).mgb’,nfm}} (48)
n—1
NO,n-IZ%fO,O 2).»1—1_ Z {(1+%m)g0,m92),n—m+%(60.mg;).n—m—fO.mal().n*m)} (49)
m=1
j-1
-1.0 = Z (%gé.oﬂ’—i.o‘gi,ofﬁj’/—i,o) (50}
i=1
j-1
M,‘—l.(): Z (.%gé.og}—i,o_gi,oglj/—io -K RH} o)~ ORjOO,() (51
i=1

j-1
0= — z g.-.of’}—f,o (52)
i=1
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Ufnl = %\r‘f}/.n.q{).n*‘ (l +2”)‘f{;.n9f},0; (1 + 1”)‘10 " ,0 fo ndj.0
“t: fo.o //n (1 ‘Hz‘“./') f(»o f,‘.n 1 J(ZP() +U.’-)ﬁ;.o /.iin* 1:

no 1
+ Z [%(1+2’”)(.t.f'.m.‘];').n m+ﬁ;.mg,’i.n*m‘)-%{.t().m.’;j’.'n*'m 1

m-l

+{1 +%al)f()/m”n ~m- 1 _%(2P() +a.j).f(‘),‘m‘f,l,/—m71) K 0

- ( | +%”1)(.{](Lm //Nn -m +‘//m /%M:fm)]
n Jo1

+ 2 L[(?qlm ’1 in-m qsz, - m) é(Pi.fé.m.;.}'i.ltfm

m=0 i=1

jon—m

n—1

v(l+§ai).,l:.m.f;'*i.n'm:|+“ P Z ’Om/On m—1

m=10

n=1 j—1 j—i

no j-1
+ Z Z 'n(‘/‘;’fi,my;.n ~m qlm j—im—m + Z Z Z P fkm j—kan—m (53)

m=1i=1 m=0i=1k=1
’\/I; no1 T %( l + ’1),11;)_,,.(/}.() - ( ! +%’1)g0./1g_/i,,0 _yé),‘ngj,() - ROKnt,O
- %: .f(]ﬁ.‘/}'.n  + (1 +%"U’).‘]E)’.().tj".n* | _%(Qo +aj)./6.o€l}.u— 1

n-1

~30Q09Y0.0. f, het) Z [(1 +%m)(.¢/o4mfl}iu/m+gj.m95.n—m)

m=1

;..

+%(l+'”)g/04m.q}.n m+%n1g,’i.mg/0.n/m—R()K 0

mYjn-m
44 " 4 . o
—3Sombin-m- t (1 +7u.1)g/0/.m4tj.n*m* 1 *i(Qo +Cll),f(;,mg}.u—m—1
n—1
4 P ) L T
- jQi)P](D.rrx.fj.r: -m 1)] +?’Ql Z .f()‘m.q{).u' m—1
m=0
n j-1
2 / '
+ 2 Z (f.‘];m.‘]j/i‘n'*rn“gi.nxg,j'~i.117m)
m=0 =1
noobj-1 ’
16¢ 1
+ Z Z [ ¥ Q ,()mql*ln m"l+(Q0+al (Jlmf] in—m- 19
m=0j-=
n j-1

_i(l +%“”.”i.m§]f}’#hn~m*1]+% Z Z nl(g(i*ig;.n*m
m=1i=1

n—1 j—1 j=i

(Lmq/ lnm+§z Z ZQﬁcm‘hk in—m—1 (54)

m=0 i=1 k=1

';_’,’,l';‘:an(,” .0 (1+%”)J0n(),o qj.Of);)‘n "{1‘000,"71

+(1+ ﬁd””i\()f_}gr s 3djfo w0 1)
w1

-+ Z [%{nz(g_;.mo().ufm+g£).m()j.n~m)_.fé)mU/[n m-1

m=1
- (] + :ta/)f/n -m—1 ()E)m +%a],0,m()]n*m -1 :

- < ] + %"1) (y().m Ul[yt -m + yj‘m ()E).H *m)]

n-1j
+ Z Z [3‘ %‘”’_,’;*i‘nﬁm"1()i.m
m=4i=1
n j=-1
)‘(1+%ai)./l:."l(};*l‘.n’“m*l:] - Z Z gi.m()}*fv”*"l
m=0i=1
noj
+; Z Z mn (/] l()ln m ‘/l"lHj ion- m) (55)
m=1i=1

The boundary conditions (32) become

=0, [,=f.=dx=9.,=0
{1 for j=n=0
00 for j£R#0

H= L S G 0500 (56)
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Knowing the coefficients in the expansions of functions P(&), Q(&), R(¢) and K({), the classical numerical
integration methods of first order ordinary differential equations systems now can be applied. Of course for
practical purposes, the computation of the first few terms of the solutions would be enough, as our experience
shows in the case of two-dimensional systems.
The local heat transfer coefficient in terms of the Nusselt number can be obtained from the following
expression:
hl Grl/4[s(é)]l/3 © ©

Nu= T =T = T GOTEDT B &, O 67

3. APPLICATIONS

Without neglecting the possibilities of application of the theory to other surface configurations, the results
will be applied here only to the case of free convection from the outer surface of an inclined circular cylinder
placed in the gravitational acceleration field, since experimental data for this case are available for
comparison. Under consideration is a circular cylinder having radius r, tilted with the inclination angle y.
When the coordinates x and z are taken respectively as circumferential and longitudinal coordinates,
and upon selecting r as the characteristic length, we identify

3 3N /64\12E32 4 (58)
ro=3-()(z)

_ 3 <64 12 32 59
00 - (3)(3) e+ (59)

C1oafea\tr 1
R(¢) = m‘f‘g(ﬁ) —“_[Cosy]mé + ... (60)
K({) =siny, K({)=1 (61)

wherein, £ is given by:
& = [cosy]"? F [sine]**de. (62)
1]

The first five terms of the series have been numerically calculated on a digital computer following the
integration procedure of Runge—Kutta—Merson [12]. The curves illustrated in Figs. 1-3 are typical results
obtained from numerical integrations. The computed temperature fields at a distance z = r for ¢ = 0, 45, 90
and 135° under inclination angles y = 25 and 45° with Prandtl number Pr = 0.72 are shown in Figs. 4-7
together with the experimental data of Deluche [10] for air. As it is seen, the agreement between the
theoretical results and the experimental data is satisfactory. It should be noted that, for the calculations here,
all the physical properties are evaluated at the film temperature, this conducing to the different value of
Grashof number estimated in [10]. Moreover, since the measurements of temperature at distances less than
1.5 mm seem to be in error, they were not plotted.

Although it is expected that the series in terms of { is convergent only for { < 1, the temperature fields have
also been calculated for distances z = 3r, 5r and the results agreed reasonably with the experimental evidence.

06 06
I fo0 ,
o4l 04l 900
- %I -
02}~ b 02 g,
1.0
0 v 0
1) \
- : %
-0 fll’ -0.2- o2
-0af- -04|-
- | | | | | | L 06 | i i | | ] |
085 | 2 3 2 5 5 7 s "9 [ 2 3 Z 5 3 7 a
n n

FiG. 1. The functional coefficients of the stream function  FIG. 2. The functional coefficients of the stream function
f(&n,0), fory = 45° and Pr = 0.72. g(&,n,0), fory = 45° and Pr = 0.72.
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1.0
O 5 900
i 8
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i e 8
i g, g, oz
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Lol I | 1 | | | |
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Fi. 3. The functional coefficients of the dimensionless
temperature function 0(&, 5. ), for» = 45 and Pr = 0.72.
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F1G. 4. Comparison of computed temperature profiles at -
=r, @=0", for Pr=072, Gr=13x10% (-----
- 7 = 457) with the experimental data (B3 =25, A 7

= 457).
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Fii. 5. Comparison of computed temperature profiles at =

=r, ¢=45", for Pr=0.72, Gr=13x10° (---- y=25",

-——- 3 = 45°) with the experimental data (B =25 . A y
= 45").
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F1G. 6. Comparison of computed temperature profiles at -
=r, p=90", for Pr=0.72, Gr=13%x10° (----- 3 =25,
-—— v = 457) with the experimental data (W7 =25, A 7
=45).
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F1G. 7. Comparison of computed temperature profiles at z

=r, @=135", for Pr=072, Gr=13x10° (- =25,

-— 7 = 45 ) with the experimental data (M y =25, A 7
=45).

4. DISCUSSION

The general solutions presented in the first part of
this paper have a great potential of applications. It
has been noted by the author that the series obtained
can be applied to more complicated surface con-
figurations such as inclined elliptical cylinders,
vertical or inclined toruses ctc. Furthermore, the
method used here seems also to be applicable to the
problems in hydrodynamic and forced convection
boundary-layers of three-dimensional systems.

Although it has been shown that the application of
the series for inclined circular cylinders verifies
satisfactorily the temperature fields obtained from
the experiment, it is however, desirable to have
further verification to compare other results such as
velocity profiles or other applications with the
experimental results. Unfortunately, the author was
unable to find them.
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COUCHE LIMITE DE CONVECTION NATURELLE LAMINAIRE DANS DES SYSTEMES
TRIDIMENSIONNELS

Résume—On propose [utilisation de la série & plusieurs variables pour les solutions des équations de

couche limite en convection naturelle dans des systémes tridimensionnels. Les solutions obtenues ont été

calculées numériquement dans le cas de la convection naturelle antour d’un cylindre incliné. Les profils de

température calculés en prenant les cinq premiers termes sont compares avec des résultats expérimentaux.
Quelques autres possibilités d’application de la theorie sont citées.

GRENZSCHICHT BEI LAMINARER FREIER KONVEKTION IN DREIDIMENSIONALEN
SYSTEMEN

Zusammenfassung— Reihen mit mehreren Variablen wurden zur Losung der Grenzschichtgleichungen fiir
die freie Konvektion in laminaren dreidimensionalen Systemen angewandt. Die numerische Berechnung
der Losungen fiir den Fall freier Konvektion iiber einem geneigten Kreiszylinder wurde untersucht. Die
mit den ersten fiinf Gliedern der Reihe berechneten Temperaturprofile werden mit experimentelien Daten
verglichen. Einige andere Anwendungsmoglichkeiten der Ergebnisse werden erwahnt.

JTAMUHAPHBIN CBOBOJHOKOHBEKTHUBHBINA CJAOH B TPEXMEPHBIX CUCTEMAX

Aunorauns — [Ins pelieHHs ypaBHEHWi NOTPAHHYHOrO CJIOA MPH HANMYHM CBOOONHOH KOHBEKUHH B

NaMHHAPHBIX TPEXMEPHBIX CHCTEMAaX HCMOJB3YIOTCA PAlbl MO HECKOJbKHM nepeMeHnsiM. [aértcs

OllCHKa PelleHHH Ins ciydas cBobOaHON KOHBEKLUMM Ha HAKIOHHOM KpyrioM umnukape. Temnepa-

TYpHbiC NPOGWIH, PACCHHTAHHBIC NTO MEPBBIM NATH WICHAM PAJA, CPABHUBAIOTCH C FKCIEPUMEHTAb-

HbIMH JaHHBIMH. YKa3aHO Ha HECKOJbKO BO3MOXHBIX CTY4acB MCNO/IL30OBAHMA PE3YILTATOB JaHHOM
paboTsi.



